Derivative of Angular Momentum
Background
The derivative of momentum is torque. So we may always see equation like
Question
What is the derivative of angular momentum?
Result
Derive
No problem can be solved from the same level of consciousness that created it.
— Albert Einstein
To derive the equations:
The \(I_{body}\) which is a constant inertia tensor described in body frame. The \(R(t)\) is rotation matrix relative to world frame.
To find the inertia tensor in world frame you need the transformation
\[I(t)=R(t)I_{body}R(t)^T\]The body at this moment has angular velocity \(\omega(t)\) described in world frame.
The derivative of rotation matrix \(R(t)\)
\[\frac{{\rm d}}{{\rm d}t} R(t) = \omega(t) \times R(t)\]where \(\times\) is the vector cross product.
The derivative of inertia tensor is derived with the chain rule
\[\begin{split}\begin{split} \frac{\rm d}{{\rm d}t} I(t) & = \frac{\rm d}{{\rm d}t} \left( R(t) I_{body} R(t)^T\right) = \frac{{\rm d}R(t)}{{\rm d}t} I_{body} R(t)^T + R(t) I_{body} \frac{{\rm d}R(t)}{{\rm d}t}^T \\ & = (\omega\times R(t)) I_{body} R(t)^T + R(t) I_{body} (\omega\times R(t))^T) \\ & = \omega \times I(t) - I(t) \omega \times \end{split}\end{split}\]The derivative of angular momentum is derived with the chain rule
\[\begin{split}\begin{split} \frac{{\rm d}}{{\rm d}t} L &= I(t) \frac{{\rm d} \omega(t)}{{\rm d}t} + \frac{{\rm d}I(t) }{{\rm d}t} \omega(t) \\ &= I(t) \dot{\omega} + \left( \omega \times I(t) - I(t) \omega \times \right) \omega \end{split}\end{split}\]
The last is Euler’s equations of rotational motion.
Weita 2021/12/03
[ ]: