{ "cells": [ { "cell_type": "markdown", "id": "e6f2ab5a", "metadata": {}, "source": [ "## Derivative of Angular Momentum\n", "\n", "#### Background\n", "The derivative of momentum is torque. So we may always see equation like\n", "$$ \\frac{{\\rm d}}{{\\rm d}t}(Iw) = \\sum\\limits_{i = 1}^{n}r_i\\times f_i$$\n", "\n", "#### Question\n", "What is the derivative of angular momentum?\n", "$$\\frac{{\\rm d}}{{\\rm d}t}L ?or \\frac{{\\rm d}}{{\\rm d}t} (Iw)?$$\n", "\n", "#### Result\n", "$$\\frac{{\\rm d}}{{\\rm d}t}(Iw) = I \\dot w + w\\times (Iw)$$\n", "\n", "#### Derive\n", "\n", "*No problem can be solved from the same level of consciousness that created it.*\n", "
--- Albert Einstein\n", "\n", "To derive the equations:\n", "\n", "1. The $I_{body}$ which is a constant inertia tensor described in body frame. The $R(t)$ is rotation matrix relative to world frame.\n", "\n", "3. To find the inertia tensor in world frame you need the transformation $$I(t)=R(t)I_{body}R(t)^T$$\n", " \n", "4. The body at this moment has angular velocity $\\omega(t)$ described in world frame.\n", " \n", "5. The derivative of rotation matrix $R(t)$\n", "$$\n", "\\frac{{\\rm d}}{{\\rm d}t} R(t) = \\omega(t) \\times R(t)\n", "$$\n", "where $\\times$ is the vector cross product.\n", " \n", "6. The derivative of inertia tensor is derived with the chain rule \n", "$$\\begin{split}\n", "\\frac{\\rm d}{{\\rm d}t} I(t) & = \\frac{\\rm d}{{\\rm d}t} \\left( R(t) I_{body} R(t)^T\\right) = \\frac{{\\rm d}R(t)}{{\\rm d}t} I_{body} R(t)^T + R(t) I_{body} \\frac{{\\rm d}R(t)}{{\\rm d}t}^T \\\\\n", "& = (\\omega\\times R(t)) I_{body} R(t)^T + R(t) I_{body} (\\omega\\times R(t))^T) \\\\\n", "& = \\omega \\times I(t) - I(t) \\omega \\times \n", "\\end{split} $$ \n", "\n", "\n", "7. The derivative of angular momentum is derived with the chain rule \n", "$$\\begin{split}\n", "\\frac{{\\rm d}}{{\\rm d}t} L &= I(t) \\frac{{\\rm d} \\omega(t)}{{\\rm d}t} + \\frac{{\\rm d}I(t) }{{\\rm d}t} \\omega(t) \\\\ &= I(t) \\dot{\\omega} + \\left( \\omega \\times I(t) - I(t) \\omega \\times \\right) \\omega\n", "\\end{split}$$\n", "\n", "$$\\boxed{\\tau = \\dot{L} = I(t) \\dot{\\omega} + \\omega \\times I(t) \\omega}$$\n", "\n", "The last is Euler's equations of rotational motion.\n", "\n", "\n", "Weita\n", "2021/12/03" ] }, { "cell_type": "code", "execution_count": null, "id": "5fa381bd", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }